Funded by AMD, Applied Materials, ASML, Cadence, Canon, Elan, Hitachi, IBM, IME, KLA-Tencor, Magma, Marvell, Mentor Graphics, Nanobics, Panasonic, SanDisk, Spansion, Synopsys, Tokyo Electron Limited, and Xilinx, with donations from Photronics, Toppan and matching support by the U.C. Discovery Program.

Motivation
- The ability to predict the effect of changes in parameters during the CMP process should be expanded
- The development of robust models for CMP remains challenging
- In-situ metrology is extremely limited
- In-situ process monitoring requires:
 - Appropriate sensor types and systems
 - Interoperability

2008 Main Objectives
- Study sensor types suitable for in-situ monitoring, including:
 - Thermal
 - Friction
 - Acoustic emission
- Develop interoperability adapters for:
 - MTConnect
 - IPC CAMX
- Develop monitoring package

The Problem
- Multiple types of sensors required
 - CMP is a complex process with several parameters that can affect material removal including pressure, velocity, pH
 - No one sensor is uniquely capable of effectively monitoring all relevant process parameters nor any one process parameter across all CMP processes
- Local monitoring necessary
 - Process parameters are highly variable across a wafer surface
 - Current sensor implementation limited to global or averaged monitoring data

Sample of In-situ CMP Sensor Technology
- End Point Detection
- Head Zone Pressure
- Micro scratching
- Pad Condition
- YWPMU
 - Acoustic Emission ✓
 - Chemical/Electrochemical ✓
 - Friction ✓
 - MEMS ✓
 - Optical ✓
 - Thermal ✓

AE Background
- Acoustic emission refers to propagation of elastic waves generated by the release of energy due to external stimuli
 - Ultrasonic frequency range (~20 – 2000 kHz)

Prior AE Research for CMP
- Endpoint detection
- Micro-scratch detection
- Multi-sensor systems

Current AE Research
- Verifying and expanding endpoint detection
- Development of deterministic methodology for micro-scratch detection
- Monitoring of in-situ pad conditioning
- Expanding use of AE in multi-sensor monitoring systems

MTConnect
- Open-source data exchange standard for manufacturing equipment
 - Key features:
 - Based on open protocols
 - Extensible & lightweight
 - “Plug-in” architecture allows application focused development
 - Accommodates legacy & custom equipment, existing standards, & existing ex-situ metrology
 - Enables advanced process control
 - Can enable IPC CAMX on legacy equipment

MTConnect Architecture
- Legacy Tool (Controller)
- MTConnect-compliant tool (controller)
- MTConnect Agent

Future Goals
- Develop CMP monitoring software that includes ability to monitor MTConnect compliant data and to detect endpoints and faults
- Expand focus to other novel sensor technologies
- Investigate graphical mapping techniques to help achieve local monitoring