Schottky-Barrier Engineering for Low-Resistance Contacts

Pankaj Kalra, Hideki Takeuchi, Tsu-Jae King

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA

Oct 03, 2005
Outline

• Introduction
• Characterization Schemes
• $\text{Si}_{1-x}\text{Ge}_x$ Source/Drain
• Dopant Segregation
• Strain
• Summary
Parasitic Resistance Components

- R_{sl} Silicide sheet resistance
- R_{csd} Contact Resistance
- R_{sd} Silicon Sheet Resistance
- R_{ov} Overlap resistance

- Parasitic resistance must be $<10\%$ of total FET resistance
- CMOS scaling
 - reduces channel resistance $\propto 1/L$
 - increases contact resistance

Source: Prof. Jason Woo, UCLA
Contact Resistance Scaling

- Change in contact scheme (adoption of SALICIDE) has extended the contact scaling
- Due to the reduction of active area, silicide/Si contact resistance is now an issue
Int’l Technology Roadmap for Semiconductors (2004 update)

- New materials and processes are needed
Impact of R_c on FinFET

H. Kam and T.-J. King, 2004 Silicon Nanoelectronics Workshop

$L_{gate} = 18$ nm, $L_{eff} = 22$ nm

- Parasitic resistances dominate FinFET performance
- $\rho_c < 10^{-8} \, \Omega\text{-cm}^2$ required

V_{ds}

I_{ds}

Wrapped Contact, $\rho_c = 0$

Wrapped Contact

End Contact

Top Contact

16% reduction

34% reduction

$\rho_c = 10^{-8} \, \Omega\text{-cm}^2$
Specific Contact Resistivity
Barrier Height and Active Dopant Concentration

\[R_{co} = \frac{\rho_c}{A_c} \]

\[\rho_c \propto \exp\left(\frac{4\sqrt{\varepsilon m^*}}{\hbar} \frac{\phi_B}{\sqrt{N}}\right) \]

- Dopant concentration, \(N \)
- Barrier height, \(\phi_B \)

- Fermi-level pinning results in:
 - Barrier height independent of metal work function
Approaches to Lowering ρ_c

- **Material engineering**
 - SiGe source/drain
 - smaller bandgap \rightarrow smaller Schottky barrier
 - $\rho_c \sim 10^{-8}$ Ω-cm2 for Ni germanosilicides on SiGe
 - lower resistivity

- **Barrier height tuning**
 - image force lowering by dopant segregation
 - A. Kinoshita et al., *Symp. VLSI Technology*, 2004
 - strain-induced ϕ_B reduction
 - A. Yagishita et al., *SSDM*, 2003

- **Fermi-level de-pinning by interface engineering**
 - insertion of insulator layer
 - selenium passivation
 - M. Tao et al., *APL*, 2003
Research Objective

• To understand the mechanisms for tuning the effective Schottky barrier height of a metallic electrode, to guide the engineering of contact-formation processes
 – Low-ϕ_B contacts for reduced parasitic resistance
 – Demonstrate fully silicided source/drain UTB MOSFETs with improved I_{dsat} by reducing ρ_c (to $<10^{-8} \Omega\text{-cm}^2$) for silicide-to-silicon contacts
Outline

• Introduction

• Characterization Schemes
 • $\text{Si}_{1-x}\text{Ge}_x$ Source/ Drain
 • Dopant Segregation
 • Strain

• Summary
Minimum measurable resistance is $\sim 10 \, \Omega$

\Rightarrow Need very small contact holes to determine ρ_c accurately below $10^{-8} \, \Omega \cdot \text{cm}^{-2}$
Test structures

- Fabrication of Kelvin structures
 - Evaluation of contact resistance

- Fabrication of diode
 - Measure schottky barrier height
Fabrication of Sub-0.25µm Contacts

- Contacts were fabricated using DUV stepper ASML5500/90; Cymer KrF excimer laser (λ=248nm)

<table>
<thead>
<tr>
<th>Energy (mJ/cm²)</th>
<th>After Litho (nm)</th>
<th>After Etch (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>188</td>
<td>171</td>
</tr>
<tr>
<td>70</td>
<td>247</td>
<td>211</td>
</tr>
<tr>
<td>75</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>275</td>
<td></td>
</tr>
</tbody>
</table>
ϕ_B extraction

- Measure diode $I-V$ characteristic at different temperatures

\[
\ln\left(\frac{I_F}{T^2}\right) \approx \ln\left(A_e A^{**}\right) - \frac{q}{kT}\left(\phi_{Bn} - V_F\right)
\]

10/03/05
Outline

• Introduction

• Characterization Schemes

• Si_{1-x}Ge_x Source/ Drain
 (This work is sponsored by the FLCC project)

• Dopant Segregation

• Strain

• Summary
Dopant Behavior in Ultra-Thin SOI

- P-channel thin-body FETs exhibit higher series resistance

→ Different behaviors of B and P in ultra-thin Si
 - dopant segregation to interface(s), or into surrounding oxide?
Epitaxial $\text{Si}_{1-x}\text{Ge}_x$ Source/Drain

- Epitaxial $\text{Si}_{1-x}\text{Ge}_x$ source/drain regions for lowering R_{series} and inducing compressive strain to enhance hole mobility
 - Conventional approach for epitaxial growth of $\text{Si}_{1-x}\text{Ge}_x$ is not possible for thin-body devices because there is not sufficient crystalline substrate after S/D etchback
Approach

- Develop a process for selectively forming strained $\text{Si}_{1-x}\text{Ge}_x$-in-SOI by intermixing Ge & Si
 - Study the intermixing of Ge with SOI films
 - effects of anneal temperature, time, boron doping
 - Investigate strain in the resultant $\text{Si}_{1-x}\text{Ge}_x$ alloy
 - Characterize metal-to-$\text{Si}_{1-x}\text{Ge}_x$ contact resistance
 - Germano-silicidation of $\text{Si}_{1-x}\text{Ge}_x$ to achieve dopant pile-up (to study ϕ_B reduction)
Advantages of This Approach

- Selective deposition of Ge by conventional LPCVD
 - GeH$_4$ gas, 320°C, 200mT
 - high process throughput (batch process)

\[\rightarrow \text{low cost} \]

XTEM of UTB MOSFET w/ raised Ge S/D

Ge/Si Interface Preparation

• Selective Ge deposition in LPCVD furnace requires a clean silicon surface
 – Interface preparation is critical

• Native oxide removal methods
 – *in-situ* HF vapor clean
 – *in-situ* HF vapor clean and Hydrogen bake
 – HF dip followed by Hydrogen bake
 – *in-situ* cleaning by GeH₄
 – Si I/I after Ge deposition
 • for breaking up any native oxide at the Ge/Si interface
In-Situ GeH₄ Cleaning

 Decreased GeH₄ flow to diffuse Ge on the surface

Clean surface

Si Ion Implantation to Break Up Native Oxide

- Si$^+$ implant has been used to break up the native oxide barrier for Solid-Phase Epitaxy (SPE)

Test Sample Process Flow

• Starting wafers
 – n-type, $\rho=5\text{-}10 \ \mu\Omega\text{-cm}$

• Cross-sectional TEM pattern formation
 – CVD SiO$_2$ deposition (52nm)
 – Lithography
 – Oxide etching (90% dry + 10% wet)
Process Flow (Cont’d)

• Interface Preparation
 – HF last / HF vapor

• Selective Ge deposition (22nm)
 – 320°C/200mTorr/100sccm
 – Capping layer (25nm)

• Si Implant
 – Si : 40keV, 1E15 cm⁻²

• Doping
 – B : 10keV, 2E15 cm⁻²

• Recrystallization
 – 500°C, 1 hour

• Intermixing anneal
 – 800°C/ 850°C, 1minute
Experimental Splits

on wafer splits = 4

Split Table:

<table>
<thead>
<tr>
<th>Wafer ID</th>
<th>Cleaning</th>
<th>I/I splits</th>
<th>Annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HF Last</td>
<td>Si I/I</td>
<td>800 C</td>
</tr>
<tr>
<td></td>
<td>HF vapor</td>
<td>Si I/I + B I/I</td>
<td>800 C</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>B I/I</td>
<td>800 C</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>Si I/I + B I/I</td>
<td>850 C</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>none</td>
<td>850 C</td>
</tr>
<tr>
<td></td>
<td>B I/I</td>
<td>Si I/I + B I/I</td>
<td>850 C</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>none</td>
<td>850 C</td>
</tr>
</tbody>
</table>
Determining Ge and B profiles
(in collaboration with Prof. Haller’s group)

• Characterization of vertical and lateral co-diffusion of Ge and B
 – Available Options:
 • Cross-sectional TEM with EDX nanoprobe
 • Cross-sectional TEM with EELS
 • Cross-sectional SEM with EDX nanoprobe
Summary and Future Goals

\textbf{Si}_{1-x}\text{Ge}_x \text{ Source/Drain}

• Fabrication of first batch is finished
 – Splits for Doped/ undoped Ge, interface preparation, annealing conditions etc.
 – Results of this batch are awaited

• Future Work:
 – Characterization of boron-doped \text{Si}_{1-x}\text{Ge}_x-on-insulator resistance
 – Characterization of metal-to-\text{Si}_{1-x}\text{Ge}_x contact resistance
 • Germano-silicidation of \text{Si}_{1-x}\text{Ge}_x to achieve dopant pile-up for Schottky barrier height (ϕ_B) reduction
Outline

• Introduction
• Characterization Schemes
• $\text{Si}_{1-x}\text{Ge}_x$ Source/ Drain
• **Dopant Segregation** (This work is sponsored in part by Intel Corp.)
• Strain
• Summary
ϕ_B Reduction by Dopant Segregation

- ϕ_B can be reduced by using an ultrathin (<10nm) heavily doped layer at the semiconductor surface

 - Image force lowering ($\Delta\phi$) due to surface electric field

 $$\Delta\phi = \frac{q}{\varepsilon_{si}} \sqrt{\frac{N a}{4\pi}}$$

 $N =$ dopant concentration in surface layer
 $a =$ width of heavily doped surface layer

Such a thin heavily doped layer can be formed by silicidation-induced dopant segregation:

Experiment

Goals: Confirm dopant segregation w/ NiSi
Investigate dopant activation

Process sequence:
- starting Si wafer (n-type/ p-type)
- deposit capping layer, CVD SiO₂
- blanket implantation
 (B- 20KeV, 10¹⁶cm⁻² As- 80KeV, 6×10¹⁵cm⁻²)
- spike annealing@1000C
- strip capping layer
- excimer laser annealing
- Ni deposition
- silicidation
- strip unreacted Ni
Results: SIMS Analyses

- Dopant pile-up at silicide/Si interface is seen for both As and B doping (only As shown here)
Schottky Barrier Lowering

- Image Force Effect
 - Induced charges at the interface
 - Equivalent to an image charge

\[
qE_g = qE_{\text{v}}(x) = qE_{\text{F}} = q\psi(x)
\]

\[
x_m = \sqrt{\frac{q}{16\pi \varepsilon_s E}}
\]

\[
PE(x) = -\frac{q^2}{16\pi \varepsilon_s x} - qE_x
\]

\[
\Rightarrow \Delta\phi = \sqrt{\frac{q}{4\pi \varepsilon_s \sqrt{E}}}
\]
Tailoring the Surface Electric Field

\[\Delta \phi \] depends on the surface electric field
- Lightly doped substrate:
 • Low \(E \), barrier-lowering is sensitive to reverse bias
- Heavily doped substrate:
 • High \(E \) \(\Rightarrow \phi_B \) is reduced, but reverse current increases
 \(\Rightarrow \) tunneling Ohmic contact!

• To retain Schottky junction properties and to achieve \(\Delta \phi \) that is insensitive to bias, a heavily doped surface layer that is *fully depleted by the built-in potential* is needed
Fully-Depleted Doped Surface Layer

• The required electric field has been shown to be $>5 \times 10^5 \text{ V/cm}$

 – Maximum surface field arising from implantation of a symmetrical distribution of charge about range R_p:

\[
E_{s,\text{max}} \approx \frac{V_b}{R_p}
\]

\[
qV_b = q\phi_{B0} - (E_c - E_f)
\]

For a metal contacting a lightly doped substrate, built-in potential $V_b \sim 0.45V$

\[
\Rightarrow R_p < 100 A
\]
Φ_B Reduction Model

- Maximum surface field, $E_{s,max}$

\[
E_{s,max} = \frac{q}{\varepsilon_s} [N_p a + N_B (W - a)]
\]

\[
E_{s,max} \approx \frac{q}{\varepsilon_s} N_p a
\]

\[
\Rightarrow \Delta \phi \approx \frac{q}{\varepsilon_s} \sqrt{\frac{N_p a}{4\pi}}
\]

Expected barrier height lowering due to a thin highly doped surface layer:
Effect of Interface States

- Metal-induced gap states (MIGS)
 - Penetration of wave function from the metal into the forbidden energy gap of Si

Electron potential energy including the contributions of image force and MIGS

\[PE(x) = -\frac{q^2}{16\pi\varepsilon_s x} - qE_x - \frac{qQ\lambda}{\varepsilon_s} e^{-\frac{x}{\lambda}} \]

- \(Q \) = magnitude of surface state charge
- \(\lambda \) = penetration depth of surface state charge
Δφ Inverse Modeling Approach

- Find the location of $PE(x)$ minimum

$$\left. \frac{d}{dx}(PE(x)) \right|_{x=x_m} = 0 \quad \Rightarrow \quad \frac{q^2}{16\pi\varepsilon_s x_m^2} qE(x_m) + \frac{qQ}{\varepsilon_s} e^{-x_m/\lambda} = 0$$

- Total barrier lowering is given by

$$\Delta \phi = \frac{q}{16\pi\varepsilon_s x_m} - \psi_0(0) - \psi_0(x_m) + \frac{Q\lambda}{\varepsilon_s} e^{-x_m/\lambda}$$

- Solve Poisson’s equation to find $\Psi_0(x)$

$$\nabla^2 \psi_0(x) = - \frac{\rho(x)}{\varepsilon_s}$$

- Extract Q and λ from measured forward $I-V$ characteristics

- Predict total barrier lowering from the model
 - N_p, work-function difference, Q, and λ are input parameters
Determining Active Dopant Concentration

• Spreading Resistance Probe (SRP):
 – within 1/2 the probe spacing (~10µm) of the Si/ silicide interface, silicide starts affecting readings because of low resistance

→ Need to remove NiSi selectively
 • surface roughness increase
 • difficult to find bevel edge
Summary and Future Work

Dopant Segregation

• Ni silicidation induced dopant segregation phenomenon confirmed

• A quantitative inverse-modeling approach has been established for determining the amount of Schottky-barrier lowering

• Future Work:
 – Fabrication and characterization of diode structures and Kelvin structures
 – Application of dopant-segregation technique to improve FinFET performance by reducing S/D contact resistance
Outline

• Introduction
• Characterization Schemes
• $\text{Si}_{1-x}\text{Ge}_x$ Source/ Drain
• Dopant Segregation
• Strain
• Summary
ϕ_B Reduction by Si Strain

A. Yagishita et al., SSDM 2003

- 1% bi-axial strain reduces ϕ_B by 0.1eV (ErSi$_{1.7}$ S/D NMOSFET)
Experimental Plan

• Use a bending apparatus
 – apply uniaxial or biaxial bending stress to Si chips

• Study ϕ_B reduction
 – Fabricate Schottky diodes and contact test structures to measure effect of strain on ρ_c

K. Uchida et al., IEDM 2004
Outline

• Introduction
• Characterization Schemes
• $\text{Si}_{1-x}\text{Ge}_x$ Source/ Drain
• Dopant Segregation
• Strain
• Summary
Summary

• Source/drain contact resistance can limit the performance of nanoscale FETs
 – $\rho_c \sim 10^{-9} \, \Omega \cdot \text{cm}^2$ will be required

• Approaches for reducing ρ_c include use of $\text{Si}_{1-x}\text{Ge}_x$ in the source/drain regions, dopant segregation, and strain

• Work in progress will clarify the mechanisms for lowering the effective Schottky barrier height ϕ_B
 → Application to nanoscale thin-body FETs
Acknowledgements

• Akira Hokazono (Toshiba Corporation)
• Dr. Chi On Chui (Intel Corporation)

• Research funding from
 – UC Discovery Grant program and member companies of the Feature-Level Compensation and Control (FLCC) project at UC-Berkeley
 – Intel Corporation