Dopant and Self-Diffusion in Semiconductors:
A Tutorial

Eugene Haller and Hughes Silvestri
MS&E, UCB and LBNL
FLCC Tutorial
1/26/04
Outline

• Motivation

• Background
 – Fick’s Laws
 – Diffusion Mechanisms

• Experimental Techniques for Solid State Diffusion

• Diffusion with Stable Isotope Structures

• Conclusions
Motivation

• Why diffusion is important for feature level control of device processing

 – Nanometer size feature control: - any extraneous diffusion of dopant atoms may result in device performance degradation
 • Source/drain extensions

 – Accurate models of diffusion are required for dimensional control on the nanometer scale
Semiconductor Technology Roadmap

(International Technology Roadmap for Semiconductors, 2001)

Difficult Challenges of the International Technology Working Groups

Modeling and Simulation

<table>
<thead>
<tr>
<th>Difficult Challenges ≥ 65 nm, Through 2007</th>
<th>Summary Of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling of Ultra Shallow Dopant Distributions, Junctions, and Silicidation</td>
<td>Dopant models and parameters (damage, high-concentration, activation, metastable effects, diffusion, interface and silicide effects). Characterization tools for these ultra shallow geometries and dopant levels.</td>
</tr>
</tbody>
</table>

Thermal & Thin-film, Doping and Etching Technology Requirements, Near-Term

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain extension X_j (nm) [G]</td>
<td>27.45</td>
<td>22.36</td>
<td>19.31</td>
<td>15.25</td>
<td>13.22</td>
<td>12.19</td>
<td>10.17</td>
</tr>
<tr>
<td>Maximum drain extension sheet resistance (PMOS) (Ω/sq) [H]</td>
<td>400.0</td>
<td>460.0</td>
<td>550.0</td>
<td>660.0</td>
<td>770.0</td>
<td>830.0</td>
<td>760.0</td>
</tr>
<tr>
<td>Extension lateral abruptness (nm/decade) [I]</td>
<td>7.2</td>
<td>5.8</td>
<td>5.0</td>
<td>4.1</td>
<td>3.5</td>
<td>3.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

White—Manufacturable Solutions Exist and Are Being Optimized
Yellow—Manufacturable Solutions are Known
Red—Manufacturable Solutions are NOT Known
Fick’s Laws (1855)

Fick’s 1st Law: Flux of atoms
\[J = -D \frac{\partial C_S}{\partial x} \]

Diffusion equation does not take into account interactions with defects!

2nd Law
\[\frac{\partial C_S}{\partial t} = \frac{\partial}{\partial x} \left(D_S \frac{\partial C_S}{\partial x} \right) \]

only valid for pure interstitial diffusion

Example: Vacancy Mechanism \(A_s + V \Leftrightarrow AV \)
\[G_{AV} = k_f[A_s][V] \quad R_{AV} = k_r[AV] \]
\[\frac{\partial C_{AV}}{\partial t} = \frac{\partial}{\partial x} \left(D_{AV} \frac{\partial C_{AV}}{\partial x} \right) - k_r[AV] + k_f[A_s][V] \]
Analytical Solutions to Fick’s Equations

\[D = \text{constant} \quad \frac{\partial C_s}{\partial t} = \frac{\partial}{\partial x} \left(D_s \frac{\partial C_s}{\partial x} \right) = D_s \frac{\partial^2 C_s}{\partial x^2} \]

- Finite source of diffusing species:
 Solution:
 Gaussian - \(C(x,t) = \frac{S}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}} \)

- Infinite source of diffusing species:
 Solution:
 Complementary error function -
 \[C(x,t) = C_o \left(1 - \frac{2}{\pi} \int_0^y e^{-z^2} dz \right), \quad y = \frac{x}{2\sqrt{Dt}} \]
Solutions to Fick’s Equations (cont.)

\[D = f(C) \] Diffusion coefficient as a function of concentration

Concentration dependence can generate various profile shapes and penetration depths
Solid-State Diffusion Profiles

Experimentally determined profiles can be much more complicated
- no analytical solution

B implant and anneal in Si with and without Ge implant

Direct Diffusion Mechanisms in Crystalline Solids

(no native defects required)

Elements in Si: Li, H, 3d transition metals

No experimental evidence
High activation energy
Vacancy-assisted Diffusion Mechanisms
(native defects required)

Vacancy mechanism

\[A_s + V \rightleftharpoons AV \]

(Sb in Si)

Dissociative mechanism

\[A_s \rightleftharpoons A_i + V \]

(Cu in Ge)
Interstitial-assisted Diffusion Mechanisms
(native defects required)

Interstitialcy mechanism

$$A_s + I \iff AI$$ (P in Si)

Kick-out mechanism

$$A_s + I \overset{11}{\iff} A_i$$ (B in Si)
Why are Diffusion Mechanisms Important?

- Device processing can create non-equilibrium native defect concentrations
 - Implantation: *excess interstitials*
 - Oxidation: *excess interstitials*
 - Nitridation: *excess vacancies*
 - High doping: *Fermi level shift*
Oxidation Effects on Diffusion

Oxidation during device processing can lead to non-equilibrium diffusion

- Oxidation of Si surface causes injection of interstitials into Si bulk
- Increase in interstitial concentration causes enhanced diffusion of B, As, but retarded Sb diffusion
- Nitridation (vacancy injection) causes retarded B, P diffusion, enhanced Sb diffusion

(Fahey, et al., Rev. Mod. Phys. 61 289 (1989).)
Implantation Effects on Diffusion

- Transient Enhanced Diffusion (TED) - Eaglesham, et al.

- Implantation damage generates excess interstitials
 - Enhance the diffusion of dopants diffusing via interstitially-assisted mechanisms
 - Transient effect - defect concentrations return to equilibrium values

- TED can be reduced by implantation into an amorphous layer or by carbon incorporation into Si surface layer
 - Substitutional carbon acts as an interstitial sink

Doping Effects on Diffusion

Heavily doped semiconductors - extrinsic at diffusion temperatures
- Fermi level moves from mid-gap to near conduction (n-type) or valence (p-type) band.

<table>
<thead>
<tr>
<th></th>
<th>Dopant charge state</th>
<th>Native defect charge state</th>
</tr>
</thead>
<tbody>
<tr>
<td>extrinsic n-type</td>
<td>(A_s^+)</td>
<td>(\Gamma, V^-)</td>
</tr>
<tr>
<td>extrinsic p-type</td>
<td>(A_s^-)</td>
<td>(\Gamma^+, V^+)</td>
</tr>
</tbody>
</table>

- Fermi level shift changes the formation enthalpy, \(H_F \), of the charged native defect

\[
C_{V,I}^{\text{eq}} = C_{Si}^o \exp \left(\frac{S_{V,I}}{k_B} \right) \exp \left(- \frac{H_{F}^V}{k_B T} \right), \quad H_{F}^V = H_{F}^o - \left(E_F - E_{V^-} \right)
\]

- Increase of \(C_{I,V} \) affects Si self-diffusion and dopant diffusion

V states (review by Watkins, 1986)
Doping Effects on Diffusion

Fermi level shift lowers the formation enthalpy, H_F, of the charged native defect

- Increase of $C_{I,V}$ affects Si self-diffusion and dopant diffusion

$$C_{V,I}^{eq} = C_{Si}^o \exp\left(\frac{S_{V,I}^F}{k_B}\right) \exp\left(-\frac{H_{V,I}^F}{k_B T}\right), \quad H_{V}^{F} = H_{V}^{F^o} - (E_F - E_{V^-})$$

Numerical example: If E_F moves up by 100 meV at 1000 °C, the change in the native defect concentration is:

$$\frac{C_{ext}^{eq}}{C_{int}^{eq}} = e^{\left(\frac{H_{int}^F - H_{ext}^F}{k_B T}\right)} \sim 3$$

Native defect concentration is 3 times larger for a Fermi level shift of only 100 meV.
Doping Effects on Diffusion

The change in native defect concentration with Fermi level position causes an increase in the self- and dopant diffusion coefficients.
Experimental Techniques for Diffusion

Creation of the Source
- Diffusion from surface
- Ion implantation
- Sputter deposition
- Buried layer (grown by MBE)

Annealing

Analysis of the Profile
- Radioactivity (sectioning)
- SIMS
- Neutron Activation Analysis
- Spreading resistance
- Electro-Chemical C/Voltage

Modeling of the Profile
- Analytical fit
- Coupled differential eq.
Primary Experimental Approaches

• Radiotracer Diffusion
 – Implantation or diffusion from surface
 – Mechanical sectioning
 – Radioactivity analysis

• Stable Isotope Multilayers
 – Diffusion from buried enriched isotope layer
 – Secondary Ion Mass Spectrometry (SIMS)
 – Dopant and self-diffusion
Radiotracer diffusion

- Diffusion using radiotracers was first technique available to measure self-diffusion
 - Limited by existence of radioactive isotope
 - Limited by isotope half-life (e.g. 31Si: $t_{1/2} = 2.6$ h)
 - Limited by sensitivity
 - Radioactivity measurement
 - Width of sections

Application of radioisotopes to surface → annealing → Mechanical/Chemical sectioning → Measure radioactivity of each section → Generate depth profile
Diffusion Prior to Stable Isotopes

What was known about Si, B, P, and As diffusion in Si

Si: self-diffusion: interstitials + vacancies
 known: interstitialcy + vacancy mechanism, \(Q^{SD} \sim 4.7 \) eV
 unknown: contributions of native defect charge states

B: interstitial mediated: from oxidation experiments
 known: diffusion coefficient
 unknown: interstitialcy or kick-out mechanism

P: interstitial mediated: from oxidation experiments
 known: diffusion coefficient
 unknown: mechanism for vacancy contribution

As: interstitial + vacancy mediated: from oxidation + nitridation experiments
 known: diffusion coefficient
 unknown: native defect charge states and mechanisms
Stable Isotope Multilayers

- Diffusion using stable isotope structures allows for *simultaneous* measurements of *self- and dopant diffusion*
 - No half-life issues
 - Ion beam sputtering rather than mechanical sectioning
 - Mass spectrometry rather than radioactivity measurement

![Diagram of stable isotope multilayers](image-url)

- a-Si cap
- nat. Si
- ^{28}Si enriched
- FZ Si substrate

![Graph showing concentration vs. depth](image-url)
Stable Isotope Multilayers

Simultaneous dopant and self-diffusion analysis allows for determination of native defect contributions to diffusion.

Multilayers of enriched and natural Si enable measurement of dopant diffusion from cap and self-diffusion between layers simultaneously.

Secondary Ion Mass Spectrometry (SIMS) yields concentration profiles of Si and dopant.
Secondary Ion Mass Spectrometry

- Incident ion beam sputters sample surface - Cs⁺, O⁺
 - Beam energy: ~1 kV
- Secondary ions ejected from surface (~10 eV) are mass analyzed using mass spectrometer
 - Detection limit: ~10^{12} - 10^{16} cm^{-3}
- Depth profile - ion detector counts vs. time
 - Depth resolution: 2 - 30 nm
Diffusion Parameters found via Stable Isotope Heterostructures

- Charge states of dopant and native defects involved in diffusion
- Contributions of native defects to self-diffusion
- Enhancement of dopant and self-diffusion under extrinsic conditions
- Mechanisms of diffusion which mediate self- and dopant diffusion
Si Self-Diffusion

- Enriched layer of ^{28}Si epitaxially grown on natural Si
- Diffusion of ^{30}Si monitored via SIMS from the natural substrate into the enriched cap (depleted of ^{30}Si)
- $855 \degree C < T < 1388 \degree C$
 - Previous work limited to short times and high T due to radiotracers
- Accurate value of self-diffusion coefficient over wide temperature range:

\[
D_{\text{Si}} = \left(560^{+240}_{-170}\right)\exp\left[-\frac{(4.76 \pm 0.04)eV}{k_B T}\right]
\]

(Bracht, et al., PRL 81 1998)
Si and Dopant Diffusion

Arsenic doped sample annealed 950 °C for 122 hrs

\[(AsV)^o \leftrightarrow As_s^+ + V^- \]

Vacancy mechanism

\[(AsI)^o \leftrightarrow As_s^+ + I^o + e^- \]

Interstitialcy mechanism
Si and Dopant Diffusion

![Graph showing concentration vs. depth for an arsenic-doped sample annealed at 950 °C for 122 hours.]

- Vacancy mechanism: $(AsV)^o \leftrightarrow As_s^+ + V$
- Interstitialcy mechanism: $(AsI)^o \leftrightarrow As_s^+ + I^o + e^-$
Si and Dopant Diffusion

Arsenic doped sample annealed 950 °C for 122 hrs

Vacancy mechanism

\[(AsV)^o \leftrightarrow As^+_s + V^-\]

Interstitialcy mechanism

\[(AsI)^o \leftrightarrow As^+_s + I^- + e^-\]
Native Defect Contributions to Si Diffusion

Diffusion coefficients of individual components add up accurately:

\[D_{Si}(n_i)_{tot} = f_{I^0} C_{I^0} D_{I^0} + f_{I^+} C_{I^+} D_{I^+} + f_{V^-} C_{V^-} D_{V^-} = D_{Si}(n_i) \]

(As diffusion) (B diffusion) (As diffusion)

(Bracht, et al., 1998)
GaSb Self-Diffusion using Stable Isotopes

“as-grown structure”
GaSb Self-Diffusion using Stable Isotopes

Annealed 650 °C for 7 hours

Isotope Concentrations (cm$^{-3}$) vs. Depth (microns)
GaSb Self-Diffusion using Stable Isotopes

Simultaneous isotope diffusion experiments revealed that Ga and Sb self-diffusion coefficients in GaSb differ by 3 orders of magnitude.
GaAs Self-Diffusion using Stable Isotopes

Temperature dependence of Ga self-diffusion in GaAs under intrinsic (x), p-type Be doping (○), and n-type Si doping (■).

Ga self-diffusion is retarded under p-type doping and enhanced under n-type doping due to Fermi level effect on Ga self-interstitials.

Diffusion in AlGaAs/GaAs Isotope Structure

Ga self-diffusion coefficient in AlGaAs found to decrease with increasing Al content.

Activation energy for Ga self-diffusion - 3.6 ± 0.1 eV

Diffusion in Ge Stable Isotope Structure

Ge self-diffusion coefficient determined from $^{74}\text{Ge}/^{70}\text{Ge}$ isotope structure

$$D_{\text{Ge}} = \left(1.2 \times 10^{-3}\, \text{cm}^2\,\text{s}^{-1}\right) \exp\left[-\frac{(3.0 \pm 0.05)\,\text{eV}}{k_B T}\right]$$

Annealed 586 °C for 55.55 hours

Diffusion in GaP Stable Isotope Structure

Ga self-diffusion coefficient in GaP determined from 69GaP/71GaP isotope structure

Annealed 1111 °C for 231 min

\[D_{Ga} = \left(2.0 \text{cm}^2 \text{s}^{-1}\right) \exp \left[-\frac{4.5\text{eV}}{k_B T}\right] \]

Diffusion in $\text{Si}_{1-x}\text{Ge}_x$

- SiGe will be used as “next generation” material for electronic devices
 - Will face same device diffusion issues as Si
 - Currently, limited knowledge of diffusion properties

SiGe HBTs with cut-off frequency of 350 GHz
Previous Results on Diffusion in Si_{1-x}Ge_{x}

Strohm, et al., (2001)
71Ge diffusion in SiGe alloys

McVay and DuCharme (1975)
71Ge diffusion in poly-SiGe alloys
Stable Isotope Diffusion in Si_{1-x}Ge_x

- Use isotope heterostructure technique to study Si and Ge self-diffusion in relaxed Si_{1-x}Ge_x alloys. (0.05 \leq x \leq 0.85)
 - No reported measurements of simultaneous Si and Ge diffusion in Si_{1-x}Ge_x alloys

Fitting of SIMS diffusion profile to simulation result of simultaneous Si and Ge self-diffusion will yield self-diffusion coefficients of Si and Ge

Simulation result of simultaneous Si and Ge self-diffusion
Conclusions

• Diffusion in semiconductors is increasingly important to device design as feature level size decreases.

• Device processing can lead to non-equilibrium conditions which affect diffusion.

• Diffusion using *stable isotopes* yields important diffusion parameters which previously could not be determined experimentally.