Line edge roughness during plasma etching
LER/CER history

• Line (and contact) edge roughness (LER/CER) became a major IC industry concern with the use of 193 nm (ArF) resists
• Degrades device performance, leakage, yield and reliability
• Countermeasures
 – Litho/etch process optimization
 – Add pattern transfer layer

As dimensions continue to shrink, even this is not adequate

Etched with 248 nm resist
LER = 7.7 nm

Etched with 193 nm resist
LER = 17.1 nm

Etched with 193 nm resist and a:C
LER = 7.8 nm
Overview of mechanisms

• Litho
 – Nonhomogeneous resist film—“soft” and “hard” patches
 – Dimensions (resist thickness and CD) are close to the size of polymer aggregates

• Etch
 – Factors: Ion bombardment, radicals, heat, polymer deposition, but also linewidth and spacewidth seem to matter
 – Ions and radicals attack soft areas in resist mask, creating rough surface and edges that transfer down into underlying films
 – Worse when etching thick films with strong bonds, like SiO2
 – Film stress, adhesion, and stress relief may also play a role
 – Volume expansion from ion implantation into mask
 – Wafer heating and cooling in plasma
 – Polymers deposited on mask and feature sidewalls
LER and “wiggling”

• Line edges may be rough, or lines may wiggle or wander—are these caused by different mechanisms?
 – LER mainly from ions interacting with polymer aggregates?
 – Wiggling mainly from stress relief?

Etched dielectrics:

LER without wiggling

Wiggling without LER
Role of photoresist

- Both 248 nm and 193 nm resists use chemical amplification to make up for the relatively low intensity of DUV light produced by the KrF and ArF lasers.
- Chemically amplified resists form “spongy” walls—photoacid diffusion and catalytic reaction form coiled polymer chains or polymer aggregates, leading to a roughened sidewall when developed.
- The developed resist is nonhomogeneous and likely to be further roughened by the physical and chemical action of plasma etching.

LER evolution:
Single-damascene trench etching

- Resist is heavily distorted by plasma etching
CER evolution:
Dual-damascene via etching

- Resist is heavily distorted by plasma etching
- Dense vias (i.e. overlapping exposure areas) are worse

<table>
<thead>
<tr>
<th>DARC etch</th>
<th>Oxide etch</th>
<th>MSL etch</th>
<th>Oxide etch</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dense via

Iso via
Role of mask dimensions

- LER gets much worse as resist thickness and CD decrease
- Maximum LER spec is expressed as % of drawn CD
- Growing disconnect between requirement and reality
Effect of chiller temperature (MERIE etcher)

- LER degrades at high and low temperatures (minimized at 15-20°C)—evidence of competing mechanisms
 - Resist roughening is reduced as temperature is lowered
 - More attack of cap and barrier films at low temperature

Lateral etching of barrier can occur on a cold wafer
Effect of RF power (MERIE etcher)

- LER degrades at high power (especially when combined with high temperature) and appears to be minimized near 800 W
- Increase in LER at very low power may be caused by overetching from missed endpoint (slow etch rate, weak signal)
Summary

• Line edge roughness is a common and potentially serious problem when patterning 193 nm photoresist

• Both lithography and plasma etching play a role in LER
 – Polymer aggregates in the resist cause it to be susceptible to roughening during both developing and etching
 – Worse as resist is thinner and narrower, or when features are closer together
 – Etching distorts roughness further—ion bombardment, radicals, heat, polymer deposition
 – LER vs. wiggling, and the role of stress

• Modeling of LER/CER will need to account for all of this…
Trademark Attribution

Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, ORNAND2™, HD-SIM™ and combinations thereof, are trademarks of Spansion LLC in the U.S. and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

This document is for informational purposes only and subject to change without notice. Spansion does not represent that it is complete, accurate or up-to-date; it is provided “AS IS.” To the maximum extent permitted by law, Spansion disclaims any liability for loss or damages arising from use of or reliance on this document.
Goals of IMPACT’s Plasma Team

- Couple models at various scales to understand plasma-surface interaction and predict profile evolution
- Build even stronger interactions between PIs and sponsors
- Key Projects
 - Develop fast algorithms to determine energy and angular distributions of all plasma species
 - Develop fundamental models for plasma-surface interactions
 - Develop predictable profile simulator for etch and deposition processes
Plasma, Surface, and Feature Scale Models

Particle-in-cell, Monte Carlo collision (PIC-MCC)
- Energy and angle of all species

Molecular dynamics (MD) simulations and beam experiments
- Fundamental surface reactions

Monte Carlo feature scale model coupling with reactor model
- Origin of surface evolution

- Couple models at various scales to understand plasma-surface interaction and predict profile evolution

![Image of plasma and feature scale models](image)

Neutral energy distributions

Ion and hot electron density

2 nm hole in Si etched with 200 eV CF$_2^+$

Resist etched by 150 eV Ar$^+$; VUV; at 100°C

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Energy (eV)</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mTorr</td>
<td>500 mTorr</td>
<td>80 mTorr</td>
</tr>
</tbody>
</table>

Low DC
- Low W_b

High DC
- Low W_b
- High W_b
Faculty Presentation: Plasma
Michael A. Lieberman
Emi Kawamura and Ying Wang
Electrical Engineering, UC Berkeley
Electromagnetic Effects

- Electromagnetic effects in capacitive discharges (joint with D. Graves)
Future Milestones

- Develop fast algorithms to determine the energy and angular distributions of energetic ions, fast neutrals, secondary electrons, and photons on the wafer surface.
- Validate with particle-in-cell simulations and/or experiments.
- Provide energy and angular distributions as input to the feature profile simulator.
Faculty Presentation: Plasma
David B. Graves
Joseph Vegh
Chemical Engineering, UC Berkeley
MD Simulated Hole Etched via CF$_3^+$ in Si

- After ~8400 CF$_3^+$ impacts (~2.7x1017 cm$^{-2}$)
- C – Red
 F – Green
 Si – White
- Hole contour shown in blue
- Nominal hole depth ~8.4 nm
- Nominal hole width ~2.2-3.2 nm
- Note ‘halo’ of damage around hole ~1 nm thick
Beam Studies of PR Roughness

- Expose sample to controlled fluxes of ions, radicals, photons: beam-exposed samples follow roughness observed in plasmas

Ar$^+$ & VUV Beam

100°C

200 nm
Future Milestones

- Plasma-surface interactions in **nanoscale feature shape evolution**

- Expose low-k dielectrics and photoresist with beams of ions, radicals and photons under vacuum conditions; measure **etch/roughening rates**

- Use **molecular dynamics** simulations to develop insights into how features etch in the presence of depositing and etching precursors
Faculty Presentation: Plasma

Jane P. Chang
John Hoang

Chemical and Biomolecular Eng., UCLA
Results from a Hybrid Model

Reactor Model Plasma Conditions

DOE shows general decrease in etch depth from center to edge

DOE shows general increase in SWA from center to edge

• Calibrated hybrid model explains general trends in SWA and etch depth

IMPACT • Plasma • 24
Extension of Feature Scale Model into 3D

- 3-D feature scale modeling finds application in predicting LER
- Estimate 3D surface normal for neutrals and using 2D projections of interface cells in x-y plane and x-z plane
Future Milestones

- Use experimental beam systems to measure the pertinent kinetics parameters, such as sticking and recombination coefficients, etch yields, angular etch dependencies to quantify the etching of SiO$_x$Cl$_y$ films

- Formulate reaction mechanisms to be incorporated in a Monte Carlo simulator to account for surface evolution, especially with competing etching/deposition processes

- Extend the model into 3-D and convert the code to run in parallel using MPI

- Integrate inputs from plasma models, reactor models, and MD simulations to further improve the predictive capability of the profile simulator.