

Tackling Electrical Variability in Advanced CMOS Technologies

Xi-Wei Lin

xiwei@synopsys.com

IMPACT Webinar, May 15, 2009, UC Berkeley

Outline

- Introduction
- Modeling Considerations
- Tackling Variability
- Summary

Outline

- Introduction
 - Proximity effects : litho, stress, Vth
- Modeling Considerations
- Tackling Variability
- Summary

Process and Layout Interactions

- Systematic, layout dependent variations result from process and layout interactions.
- The enabling manufacturing processes are inherently coupled with design.

Sources of Layout Proximity Variations

Lithographic Proximity : Poly and Diffusion

Well Proximity (WPE), transient -enhanced diffusion (TED), ...

Mechanical stress due to STI, SiGe, ESL, SMT, ...

Corner Rounding Gets Worse

• Different W's require jogs in diffusion mask

Max variation at 45nm :

L ~ 5% W ~ 10% Overlay error (misalignment) aggravates the channel distortion.

The jogs have a fixed curvature radius of ~60nm that can not be improved by OPC. Meanwhile, the poly pitch shrinks by 0.7x with each technology node

The channel shapes become distorted

- How does it affect transistor performance?
 - Poly gate shape distorted channel length
 - > Active layer shape varied channel width

Strain Engineering

An enabling technology since 90nm

- Stress sources:
 - Stress liner (ESL) : single or dual
 - Embedded SiGe (S/D)
 - Stress memorization technique
 - Strain-Si/SiGe
 - Trench contacts
 - STI

Embedded SiGe Process for PMOS

PMOS Enhancements

C. Auth et al. (Intel), VLSI Symposium 2008 K. Kuhn 2009 CMOS Variation Conference (Landon)

Stress Boost due to Gate Replacement

Fig.3 Stress contours in the PMOS transistor before and after the removal of the polysilicon dummy gate. Stress in the channel is shown to increase 50% from \sim 0.8GPa to >1.2 GPa.

C. Auth et al. (Intel), VLSI Symposium 2008

45nm HK/MG

Contact and Gate Induced Stress

• NMOS Enhancement (45nm HK/MG)

Tensile trench contacts

Fig.4 Ion-Ioff benefit of tensile Contact Fill showing a 10% NMOS Idsat benefit. Contact resistance is matched for the two fill materials.

Compressive gate stress

Fig.5 Ion-Ioff benefit of compressive gate stress showing a 6% NMOS Idsat gain. Tensile Contact Fill is used on both sets of data.

C. Auth et al. (Intel), VLSI Symposium 2008 K. Kuhn 2009 CMOS Variation Conference (Landon)

Stress Impact on Band Structure

Complexity of Stress Effects on Mobility

Electron and hole mobility change per 1 GPa stress, based on piezoresistance effect

	Tensile		Compressive	
Stress component	nMOS	pMOS	nMOS	pMOS
1 GPa along channel (X) Longitudinal	+30%	-70%	-30%	+70%
1 GPa across channel (Z), Transverse	+20%	+70%	-20%	-70%
1 GPa vertical (Y) Out of plane	-50%	+1%	+50%	-1%

Wafer orientation: (100)/<110>

- Direction
- Sense
- Type

$$\frac{\Delta\mu}{\mu} \approx \left| \pi_{11} \sigma_{11} + \pi_{\perp} \sigma_{\perp} \right|$$

Piezoresistance coefficients are valid under small and moderate stress, where the piezoresistance varies linearly with stress.

WPE

Mask Mask

Instance parameters: DELVTO, DELK2

- Use more fundamental equations
 - More accurate and predictable
- The model computation is integrated with a dedicated geometry engine for performance, capacity, and efficiency
- Simpler instance parameter set

Threshold Variation Due to STI Proximity

Maximum TED similar to the test nMOS with huge S/D area

Less TED with B asymmetry due to the different proximity of STI behind S & D

TED: transient induced diffusion

Complex Layout Effects

Typical Amount of Variations

Layout Variation	Typical I _{on} variation range	Typical V _{th} variation range
Length of diffusion (LOD) (SiGe or STI)	~30%	~50mV
Spacing to adjacent diffusion	~5%	~15mV
Active diffusion corners	~5%	~15mV
Poly spacing	~15%	~30mV
Poly corner rounding	~5%	~20mV
Well boundary (WPE)/ Dual stress liner (DSL)	~15%	~90mV
Contact to gate distance	~3%	~10mV

Cell Context as a Variable

- Ambit corresponds to the range of interaction
 - Ambit size = 1.5 um for litho and stress!
 - Gate size (2-input NAND) is smaller than the ambit size at 90nm and below.

Outline

- Introduction
- Modeling Considerations
- Tackling Variability
- Summary

Variations: Causes and Effects

Effect	Physical Variation	Device Variation	Electrical Impacts	Core BSIM Parameters
Lithographic Proximity	Shape of poly gate, diffusion region	L, W	lon, loff	L, LINT, DLC, W, WINT, DWC
Mechanical Stress	Mechanical strain, defect diffusion	Mobility	lon	U0, VSAT, VTH0, K2, ETA0
Well Proximity	Channel doping	V _{th}	lon, loff	VTH0, K2, U0
Implant Damage	Point defects (TED)	V _{th}	lon, loff	VTH0, K2

Physical -> Electrical Variations

Modeling Approaches

- Empirical Approach
 - As good as the test structures
 - Critical effects might be overlooked, without knowing where to look for
- Physics-based
 - Better predictability, despite unknowns
 - Decoupling of effects
 - More efficient usage of test patterns

Adapting to Complex Proximity Effects

- Increasingly complex proximity effects lead to:
 - More development effects in LPE and modeling
 - Increased runtime during LVS and SPICE simulations

Increase in Number of Instance Parameters

• The number of LPE instance parameters are on the rise, due to the complexity of DFM effects.

LPE v. MBE

- Layout Parameter Extraction (LPE)
 - Empirical and unscalable for complex proximity effects (Stress and Litho)
- Model-Based Extraction (MBE)
 - More physical, accurate, and predictable for complex layouts.

From Layout to SPICE Instance Parameters

Integrate physical models with geometry processing.

Strain Engineering and Modeling

Predictable Success

Contour to Electrical Analysis

Gate Contour Simulations

• Current flows in parallel to channel length

Non-Rectangular Poly Gate Shape

- · Poly flare-out is beneficial
- 10% I_{on} gain at a fixed I_{off} or 3x reduction in I_{off}

Active Rounding : I_{on}/I_{off} Performance

- Large source structure provides better performance
 - 10% Ion gain or 3x loff reduction
- Large drain structure degrades performance
 - 50% lon degradation or 3x loff leakage

M. Choi et al. SPIE 09

Outline

- Introduction
- Modeling Considerations
- Tackling Variability
 - Accurate modeling
 - Understanding sensitivity
 - Prevention
 - Optimization
 - Visibility to designers
 - Margin
 - Efficient design flow

Summary

Stress Field

• Stress is a field that penetrates across isolation and beyond edges.

Prevention

- Regularity and restrictive design rules (RDR) are necessary to mitigate the primary variability.
- But RDR is not sufficient, as the need for layout flexibility will persist, due to density and performance constraints
 - Poly spacing variation still exists, despite effort to comply with RDR poly-on-grid
 - Active diffusion jogs and corner rounding remain pervasive.

Optimization

- Objectives
 - Minimize sensitivity
 - Match Idsat
 - Delay/Leakage
- Focus on critical devices
 - Ignore non-critical ones (enable, reset, ...)
- Adjustments
 - Sizing W, remove jogs, adjust distance to n-well, ...
 - Cell placement with desirable neighbors

What-if Analysis

- weaken nmos
- enhance pmos
- enhance nmos
- weaken pmos

Losing Visibility ...

LPE annotated netlist ...

M1 N_2 N_93 nrd=0.534977	N_9 N_135 pm l=0.032000u w=0.40000u ad=0.048262p pd=1.054000u as=0.028630p ps=0.549000u nrs=0.233352 ka=0.284000u kb=0.118000u ka1=0.284000u kb1=0.118000u ka2=0.284000u kb2=0.118000u ka3=0.284000u kb3=0.118000u sca=15.009148 scb=0.014816 scc=0.001477 xp=0.244435u
+	xp1=0.230865u xp2=0.174918u xp3=0.191948u xa=0.206750u ka4=0.166915u xb=0.179857u
+	xb1=0.181837u fx=3.862724u fx1=3.855471u fy=0.338502u fy1=0.251403u fy2=0.324598u
+	rs=5.430328u rw=0.634072u *xy(4.047 0.1445)
M2 N_2 N_92 nrd=0.533926 + + +	N_9 N_135 pm l=0.032000u w=0.40000u ad=0.042536p pd=1.026000u as=0.028630p ps=0.549000u nrs=0.233352 ka=0.104000u kb=0.298000u ka1=0.104000u kb1=0.298000u ka2=0.104000u kb2=0.298000u ka3=0.104000u kb3=0.298000u sca=14.969629 scb=0.014816 scc=0.001477 xp=0.140000u xp1=0.140000u xp2=0.140000u xp3=0.140000u xa=0.145771u ka4=0.154446u xb=0.178830u xb1=0.180733u fx=4.010791u fx1=4.004751u fy=0.338502u fy1=0.251403u fy2=0.324598u rs=5.510477u rw=0.634072u *xy(3.867 0.1445)

- Designers' questions:
 - What's the actual driving strength of transistor M1?
 - How is M1 different from M2, both having the same W & L?

From Layout to Electrical ...

MI47 VSS CDN:F67 XI180-NET6:F68 VDD pm I=0.032u w=0.4u ad=0.034174p nrd=0.37971 nrs=0.266667

- + pd=0.678261u ps=0.46u as=0.024p
- + MULU0=1.054 DELVTO=-0.022 **\$Ion=0.0002595 \$Ioff=1.325e-08 \$Vtsat=0.069489**
- Directly relate layout to electrical properties (I_{on}, I_{off}, V_{th}) for each transistor in design

Visualization : Electrical Variation Across a Cell

Analyzing Cell Context Effects

Context Dependent Delay Variation

- Context dependent timing variation can be evaluated to determine
 - Sensitivity
 - Distribution
 - Derating factor, ...

Example: Context Dependent Timing Variation

 Context analysis reveals timing variations (delay/transition), and best and worst case neighbors.

Interconnect Context

Case 1

Case 2

• Capacitance is dependent on cell context, due to coupling and metal density variations.

 Net
 N1
 N2

 diff
 136.70%
 47.45%

Context Distribution

 Context analysis reveals timing variations, and best and worst case neighbors.

Global View

• Beyond circuit simulations ...

Open Questions

- Is it possible to standardize the proximity models?
- How to quantify the trade-offs between RDR and design flexibility in actual chips?
- How to take advantage of variability for performance and cost trade-offs?
- How to quickly estimate circuit sensitivity to individual components and their interactions?
- How to perform concurrent optimization to close the design gap between pre and post layout in custom circuits?
- Anything new in FinFET strain engineering?
- •

- - -

Summary

- Layout proximity effects arise from interactions between design and process
- The stress variability in design surpasses litho at 45nm and below
- Understanding of the underlying physics is essential to develop practical solutions to tackle the electrical variability
- Design methodology and efficiency are important as well

THANK YOU

©Synopsys 2008