Comprehensive CD Uniformity Control in Lithography and Etch Process

Qiaolin Zhang^{a,} Cherry Tang^b, Tony Hsieh^b, Nick Maccrae^b, Bhanwar Singh^b, Kameshwar Poolla^a, Costas Spanos^a

> aDept of EECS, UC Berkeley bSDC, Advanced Micro Devices

> > March 3, 2005

Motivation

- • Importance of across-wafer (AW) CD (gate-length) uniformity
	- Impacts IC performance spread and yield
	- Large AW CDV large die-to-die performance variation low yield \blacksquare
- \bullet How to cope with increasing AW CD variation?
	- Employ design tricks, ex. adaptive body biasing
		- Has limitations
	- Reduce AW CD variation during manufacturing
		- The most effective approach

2

CD Uniformity Control Approach

- •Current litho clusters strive for <u>uniform PEB profile</u> of multizone bake plate and contemplate <u>die-to-die exposure dose</u> compensation to improve CDU.
- •Our approach is to manipulate across-wafer PEB profiles to compensate for other systematic across-wafer poly CD variation sources

Develop Inspection (DI) CDU Control
\n**Methodology**
\n• The across-water DI CD is a function of zone offsets
\n
$$
\vec{T} = \begin{bmatrix} T_1 \\ \vdots \\ T_m \end{bmatrix} = \begin{bmatrix} g_1(O_1, O_2 \dots O_7) \\ \vdots \\ g_m(O_1, O_2 \dots O_7) \end{bmatrix}
$$
\n
$$
\vec{CD}_{DI} = \begin{bmatrix} CD_1 \\ \vdots \\ CD_n \end{bmatrix} = \begin{bmatrix} f_1(O_1, O_2 \dots O_7) \\ \vdots \\ f_n(O_1, O_2 \dots O_7) \end{bmatrix}
$$
\n
$$
\vec{CD}_{DI} = \vec{AT} \vec{S}_{resist} + \vec{CD}_{baseline}
$$

- •Seen as a constrained nonlinear programming problem
- • Minimize $\left(\overrightarrow{CD}_{DI} - \overrightarrow{CD}_{target}\right)^T \left(\overrightarrow{CD}_{DI} - \overrightarrow{CD}_{target}\right)$
- •Subject to: $O^{Low} \leq O_i \leq O^{Up}$ $i = 1, 2...7$

FLCC

Snapshot of Derived CD-to-Offset Model

 \bullet Empirically derived CD-to-offset model based on temperature-to-offset model and resist PEB sensitivity

Final Inspection (FI) CDU Control Methodology

$$
\overrightarrow{CD}_{DI} = \Delta \overrightarrow{T} S_{resist} + \overrightarrow{CD}_{baseline}
$$

•Plasma etching induced AW CD Variation (signature)

$$
\overrightarrow{\Delta CD}_{p_s} \stackrel{\Delta}{=} \overrightarrow{CD}_{FI} - \overrightarrow{CD}_{DI}
$$

•Across-wafer FI CD is function of zone offsets

$$
\overrightarrow{CD}_{FI} = \overrightarrow{CD}_{DI} + \overrightarrow{\Delta CD}_{p_s} = \begin{bmatrix} g_1(O_1, O_2...O_7) \\ ... \\ g_n(O_1, O_2...O_7) \end{bmatrix}
$$

- Now we minimize: $\left(\overrightarrow{CD}_{FI} \overrightarrow{CD}_{target}\right)^{T} \left(\overrightarrow{CD}_{FI} \overrightarrow{CD}_{target}\right)$
- *Up i*Subject to: $O^{Low} \leq O_i \leq O^{Up}$ $i = 1, 2...7$ Subject to:

•

Plasma Etching Induced AW CD Variation

- • PEB-based DI control can be tuned to anticipate the plasma induced non-uniformity and cancel it.
- • Use 3 plasma non-uniformity examples to simulate the proposed FI CDU control approach.

Simultaneous CDU Control for Multiple CD Targets

- •Multi-objective optimization of CDU for multiple targets
- •Minimize the weighted sum of deviation of each target

$$
J = \sum_{i=1}^{n} W_i \left\| \overrightarrow{CD_i} - \overrightarrow{CD_i} \right\|^2
$$

Subject to:

$$
0 \le W_i \le 1 \qquad 1 \le i \le n
$$

$$
\sum_{i=1}^n W_i = 1
$$

Optimal zone offsets:

$$
\overrightarrow{O}_{opt} = \underset{\overrightarrow{O}}{\arg\min} (\sum_{i=1}^{n} W_i \left\| \overrightarrow{CD_i} - \overrightarrow{CD_i} \right\|^2)
$$

– The relative magnitude of the weighting factor indicates the importance of meeting the corresponding CD target

Simultaneous CDU Control for Multiple CD

- Targets •What is the best improvement possible for multiple targets?
- • How can we *automatically* find the corresponding weighting factors and optimal zone offsets?
- \bullet Minimax optimization
	- Weighting factors of the jth iteration along the optimal searching trajectory:

$$
\overrightarrow{W}_{j} = [W_{1,j} \quad \dots \quad W_{n,j}]^{T}
$$
\n- Minimax to find optimal weighting $\sum_{i=1}^{n} W_{i}$ and $\sum_{i=1}^{n} W_{i}$ and offisets

$$
\vec{W}_{opt} = \begin{bmatrix} W_{1,opt} & \dots & W_{n,opt} \end{bmatrix}^T = \underset{\vec{W}_j}{\arg \min} (\max(\sigma_{1,j} \quad \dots \quad \sigma_{n,j}))
$$

$$
\overrightarrow{O}_{opt} = \underset{\overrightarrow{O}}{\arg\min}(\sum_{i=1}^{n}W_{i,opt} \left\|\overrightarrow{CD_{i}} - \overrightarrow{CD_{-}T_{i}}\right\|^{2})
$$

Simultaneous CDU Control for Multiple CD

Targets Simulation of simultaneous CDU control for *dense, semi-iso and iso lines*

Dense Semi-isolated Isolated

Summary and Conclusions

- •Extracted CDU signatures of dense, iso and semi-iso
- • CD-to-offset model enables DI & FI CDU control
	- The derived CD-to-offset model is based on temperature-to-offset model and resist PEB sensitivity
	- Offers better fidelity than the old CD-to-offset model purely based on CD measurement
	- Simulation indicates promise of DI & FI CDU control
- \bullet Multi-objective & minimax optimization schemes enable simultaneous CDU control for multiple CD targets
- •Work in SDC at AMD are under way to validate this approach experimentally

Technology/Circuit Co-Design: **Impact of Spatial Correlation**

Paul Friedberg

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

Feb. 14, 2005

Outline

- •Motivation
- •Spatial Correlation Extraction
- •Impact of Spatial Correlation on Circuit Performance
- \bullet How does process control impact spatial correlation?
- \bullet Conclusions/Future Plans

Spatial Correlation Analysis

- •Exhaustive ELM poly-CD measurements (280/field):
- • Z-score each CD point, using wafer-wide distribution:

$$
z_{ij} = \left(x_{ij} - \overline{x}_j\right) / \sigma_j
$$

• For each spatial separation, calculate correlation ρ among all within-field pairs:

$$
\rho_{jk} = \left(\sum z_{ij} * z_{ik}\right) / n
$$

Spatial Correlation Dependence • Within-field correlation vs. horizontal/vertical distance, evaluated for entire wafer:

• Statistical assumptions are violated (distribution is not stationary): we will address this later

Spatial Correlation Model

 \bullet Fit rudimentary linear model to spatial correlation curve extracted from empirical data:

Monte Carlo Simulations

- \bullet Use canonical circuit of FO2 NAND-chain w/ stages separated by 100 μ m local interconnect, ST 90 μ m model: 100 µm
- • Perform several hundred Monte Carlo simulations for various combinations of X_L , ρ_R , and σ/μ (gate length variation) Input *Stage i* Output
- • Measure resulting circuit delays, extract normalized delay variation $(3\sigma/\mu)$

Delay Variability vs. X_L , ρ_R , σ/μ

- Scaling gate length variation directly: most impactful
- • Reducing spatial correlation also reduces variability, increasingly so as ρ decreases

Origin of Spatial Correlation Dependence

• CD variation can be thought of as nested systematic variations about a true mean:

$$
CD_{ij} = \mu + mask + \underbrace{f_i + w_j}_{\text{True mean}} + \varepsilon_{ij}
$$
\n
$$
C1_{\text{True mean}}
$$
\n
$$
A1_{\text{cross-field}}
$$
\n
$$
Wafer
$$
\n
$$
M1_{\text{True mean}}
$$
\n
$$
M2_{\text{True mean}}
$$
\n
$$
Wafer
$$
\n
$$
T1_{\text{True mean}}
$$
\n
$$
T2_{\text{True mean}}
$$
\n
$$
T1_{\text{True mean}}
$$
\n
$$
T2_{\text{True mean}}
$$
\n
$$
T1_{\text{True mean}}
$$
\n
$$
T2_{\text{True mean}}
$$
\n
$$
T1_{\text{True mean}}
$$
\n
$$
T1_{\text
$$

Origin of Spatial Correlation Dependence

•Within-die variation:

Average Field

Scaled Mask Errors

Non-mask related across- field systematic variation

Polynomial model of across-field systematic variation

Removing this component of variation will simulate *WID***process control**

Origin of Spatial Correlation Dependence

•Across-wafer variation extraction:

Artificial *WID* Process Control

• By removing the within-field component of variation, we get distinctly different correlation curves:

• Shape of curve changes; correlation decreases for horizontal, but *increases* for vertical

 \bullet Shape stays roughly the same; correlation decreases across the board

Artificial *AW+WID* Process Control

 \bullet Removing both *AW* and *WID* components, get a cumulative effect larger than the sum of the parts:

Additional process control

•One more round of control: die-to-die dose control

Conclusions

- Correlation effects are significant: should definitely be included in MC simulation frameworks
- Spatial correlation virtually *entirely* accounted for by systematic variation

 \rightarrow Complete process control can almost completely reconcile correlation

- As process control is implemented, *^σ* and *ρ* are simultaneously reduced: a double-win
- The closer to complete control, the greater the impact of additional control on correlation
	- Last "little bit" of systematic variance in the distribution causes substantial correlation

