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Motivation 
• Importance of across-wafer (AW) CD (gate-length) uniformity 

– Impacts IC performance spread and yield 
– Large AW CDV         large die-to-die performance variation

low yield

• How to cope with increasing AW CD variation?
– Employ design tricks, ex. adaptive body biasing

• Has limitations
– Reduce AW CD variation during manufacturing

• The most effective approach 
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Across-wafer CD Variation Sources

Spin/Coat

PEB
Develop

Exposure
Deposition

Etch

Total across-wafer 
CD Variation
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CD Uniformity Control Approach
• Current litho clusters strive for uniform PEB profile of multi-

zone bake plate and contemplate die-to-die exposure dose 
compensation to improve CDU.

• Our approach is to manipulate across-wafer PEB profiles to 
compensate for other systematic across-wafer poly CD 
variation sources

Exposure PEB Develop Etch
Spin/
Coat/
PAB

CD 
MetrologyOptimizer

Optimal zone 
offsets
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Multi-zone PEB Bake plate

General schematic setup of 
multi-zone bake plate

Each zone is given an individual 
steady state target temperature, 

by adjusting an offset value

Zone offset 
knobs
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Develop Inspection (DI) CDU Control 
Methodology 

• The across-wafer DI CD is a function of zone offsets

• Seen as a constrained nonlinear programming problem
• Minimize

• Subject to: Up
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zone 4 zone 5 zone 6

zone 7

Snapshot of Derived CD-to-Offset Model 
• Empirically derived CD-to-offset model based on 

temperature-to-offset model and resist PEB sensitivity
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Simulation Results of DI CDU Control 

69%61%72%CDU Improvement
Isolated LineSemi-isolated LineDense Line

Optimal DI CD

Dense Line         Semi-isolated Line        Isolated Line

Optimal DI CDOptimal DI CD

Experimentally 
extracted 

baseline CDU

Simulated 
optimal CDU after 
applying DI CDU 

control
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Final Inspection (FI) CDU Control Methodology 

• Across-wafer FI CD is function of zone offsets
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• Plasma etching induced AW CD Variation (signature)
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Plasma Etching Induced AW CD Variation
• PEB-based DI control can be tuned to anticipate the plasma 

induced non-uniformity and cancel it. 

• Use 3 plasma non-uniformity examples to simulate the 
proposed FI CDU control approach.

Bowl Dome Tilt
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FI CDU Control Simulation - Bowl Plasma 
SignatureDense Semi-isolated      Isolated 

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Experimentally 
extracted 

baseline CDU

Simulated 
corrected DI CD 
after applying FI 

CDU control

Simulated optimal 
FI CD after 

applying FI CDU 
control

53%37%57%CDU Improvement
IsolatedSemi-isolated Dense
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FI CDU Control Simulation - Dome Plasma 
Signature

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Dense Semi-isolated      Isolated 
Experimentally 

extracted 
baseline CDU

Simulated 
corrected DI CD 
after applying FI 

CDU control

Simulated optimal 
FI CD after 

applying FI CDU 
control

65%56%69%CDU Improvement
IsolatedSemi-isolated Dense
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FI CDU Control Simulation - Tilted Plasma 
Signature

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Optimal DI CD

Optimal FI CD

Dense Semi-isolated         Isolated 
Experimentally 

extracted 
baseline CDU

Simulated 
corrected DI CD 
after applying FI 

CDU control

Simulated optimal 
FI CD after 

applying FI CDU 
control

52%34%56%CDU Improvement
IsolatedSemi-isolated Dense
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• Multi-objective optimization of CDU for multiple targets 
• Minimize the weighted sum of deviation of each target

– Subject to:

– Optimal zone offsets:

– The relative magnitude of the weighting factor indicates the 
importance of meeting the corresponding CD target
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Simultaneous CDU Control for Multiple CD 
Targets

• What is the best improvement possible for multiple targets? 
• How can we automatically find the corresponding weighting 

factors and optimal zone offsets?
• Minimax optimization

– Weighting factors of the jth iteration along the optimal searching 
trajectory:

– Minimax to find optimal weighting factors and offsets
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Simultaneous CDU Control for Multiple CD 
Targets

68.6%32.4%64.1%Wd = 0.05; Ws =0.05 ; Wi =0.90
54.1%60.7%48.2%Wd = 0.05; Ws =0.90 ; Wi =0.05
61.8%15.9%71.8%Wd = 0.90; Ws =0.05 ; Wi =0.05
66.4%40.7%64.9% Wd =0.36; Ws =0.33 ; Wi =0.31 

Iso LineSemi-iso LineDense Line

Dense            Semi-isolated          Isolated

Optimal DI CD Optimal DI CD Optimal DI CD

Experimentally 
extracted 

baseline CDU

Simulated optimal 
FI CD after applying 

simultaneous    
CDU control

Simulation of simultaneous CDU control for dense, semi-iso and iso lines
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Summary and Conclusions
• Extracted CDU signatures of dense, iso and semi-iso
• CD-to-offset model enables DI & FI CDU control 

– The derived CD-to-offset model is based on temperature-to-offset 
model and resist PEB sensitivity

– Offers better fidelity than the old CD-to-offset model purely based on 
CD measurement 

– Simulation indicates promise of DI & FI CDU control

• Multi-objective & minimax optimization schemes enable 
simultaneous CDU control for multiple CD targets 

• Work in SDC at AMD are under way to validate this approach 
experimentally 
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Technology/Circuit CoTechnology/Circuit Co--Design:Design:
Impact of Spatial CorrelationImpact of Spatial Correlation
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Outline

• Motivation
• Spatial Correlation Extraction
• Impact of Spatial Correlation on Circuit Performance
• How does process control impact spatial correlation?
• Conclusions/Future Plans
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Gate length, Vth, tox

Motivation: reality

Circuit design Manufacturing
design 
rules

performance power
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Motivation: simulation

performance power

Canonical circuit Manuf. statistics
µ, σ, ρ

primary focus:  
spatial correlation
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Spatial Correlation Analysis
• Exhaustive ELM poly-CD measurements (280/field):
• Z-score each CD 
point, using wafer-wide 
distribution:

• For each spatial 
separation, calculate 
correlation ρ among all 
within-field pairs:

( ) nzz ikijjk /*∑=ρ

( ) jjijij xxz σ/−=

(CD data courtesy of Jason Cain)
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Spatial Correlation Dependence
• Within-field correlation vs. horizontal/vertical distance, 

evaluated for entire wafer:

• Statistical assumptions are violated (distribution is not 
stationary):  we will address this later
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Spatial Correlation Model
• Fit rudimentary linear model to spatial correlation 

curve extracted from empirical data:

XL, characteristic 
“correlation length”

Ignore this part of 
the curve— restrict 
critical paths to 
some reasonable 
length

ρB

Characteristic 
“correlation 

baseline”
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Monte Carlo Simulations
• Use canonical circuit of FO2 NAND-chain w/ stages 

separated by 100µm local interconnect, ST 90nm 
model:

• Perform several hundred Monte Carlo simulations for 
various combinations of  XL, ρB, and σ/µ (gate length 
variation) 

• Measure resulting circuit delays, extract normalized 
delay variation (3σ/µ )

Input

100µm

OutputStage i

100 µm
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Delay Variability vs. XL, ρB, σ/µ

• Scaling gate length variation directly: most impactful
• Reducing spatial correlation also reduces variability, 

increasingly so as ρ decreases
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• CD variation can be thought of as nested systematic 
variations about a true mean:

Origin of Spatial Correlation Dependence

Across-field

CDij =    µ + mask +   fi +    wj +    εij

Across-wafer

Spatial components

True mean

Wafer

Field
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Origin of Spatial Correlation Dependence
• Within-die variation:

Average Field

Scan

Sl
it

Scaled Mask Errors Non-mask related across-
field systematic variation

- =

Polynomial model of 
across-field 

systematic variation

Removing this component of 
variation will simulate WID

process control
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Origin of Spatial Correlation Dependence
• Across-wafer variation extraction:

- -

=

Average Wafer Scaled Mask Errors Across-Field Systematic Variation

Across-Wafer 
Systematic Variation

Polynomial Model

Removing this 
component of 
variation will 
simulate AW

process control
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Artificial WID Process Control
• By removing the within-field component of variation, 

we get distinctly different correlation curves:

• Shape of curve changes; correlation decreases for 
horizontal, but increases for vertical
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Artificial AW Process Control
• Removing the across-wafer component only:

• Shape stays roughly the same; correlation decreases 
across the board
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Artificial AW+WID Process Control
• Removing both AW and WID components, get a 

cumulative effect larger than the sum of the parts:
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Additional process control
• One more round of control:  die-to-die dose control

- =

Horizontal separation Vertical separation
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Conclusions
• Correlation effects are significant:  should definitely 

be included in MC simulation frameworks
• Spatial correlation virtually entirely accounted for by 

systematic variation
Complete process control can almost completely 

reconcile correlation
• As process control is implemented, σ and ρ are 

simultaneously reduced: a double-win
• The closer to complete control, the greater the impact 

of additional control on correlation
– Last “little bit” of systematic variance in the distribution 

causes substantial correlation 


